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Abstract 
Conventional geostatistics aims at creating models of 

heterogeneity and uncertainty in static rock properties such as 
facies, porosity, and permeability.  This approach is 
appropriate for calculating in place resources and providing 
input to flow simulation.  There are times, however, when no 
flow simulation is going to be performed and we would like to 
directly predict reservoir flow characteristics.  Different 
techniques are required when the aim is to directly create maps 
of the (uncertainty in) production potential.  This paper 
summarizes a practical and useful technique for this purpose. 

The petroleum industry is reliant on many types of 
geological and geophysical information to predict reservoir 
performance.  This data covers different areas, provides data 
on different scales, and is variably correlated to the production 
characteristics we are trying to predict. Statistical techniques 
can be used to summarize the relationships between the 
variables; however, they do not account for spatial correlation.  
Geostatistical techniques incorporate spatial structure but these 
techniques are cumbersome in the presence of many secondary 

variables.  We propose that all secondary data be merged 
statistically by a multivariate Gaussian approach into a single 
variable that contains all of the secondary variable 
information; this provides a likelihood distribution.  The spatial 
distribution of each variable by itself is mapped independently 
of the secondary variable information; this provides a prior 
distribution.  The likelihoods and priors are merged to provide 
an updated posterior distribution. This technique has been 
successfully applied in a number of cases.  We describe the 
methodology and show a synthetic example for illustration. 

Introduction 
Our goal is to directly predict reservoir performance 

potential summarized by some production variables.  The 
production variables we are predicting are measures of 
hydrocarbon flow rate and projected cumulative production.  
Implicitly we assume that the wells are far enough apart so that 
they are not interacting together in any significant way. 
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Reservoir characterization uses every data source and 
interpretive tool possible to improve understanding of the 
reservoir performance potential at locations where we have no 
wells.  In general, we can group the available data into: 
• Geological variables that take two forms: (1) maps of 

interpreted variables where the regional depositional 
setting is taken into consideration and some expert 
judgement is accounted for in the map making, and (2) 
direct well measurements of variables such as porosity, pay 
thickness and so on.  Another grouping of geological 
variables is into structural and geological variables where 
the structural variables relate to the container size and 
shape and the geological variables relate to the internal 
reservoir quality. 

• Geophysical variables that have high areal resolution, low 
vertical resolution, and variable correlation to actual rock 
properties and production variables.  These variables can 
be direct attributes such as amplitudes or processed 
variables such as interpreted fracture densities or P/S 
impedances. 

• Production variables that we are trying to predict such as 
initial production rate and projected cumulative 
production.  These variables would typically be interpreted 
from the production at existing wells, that is, some kind of 
decline analysis. 

The production variables have some spatial correlation that 
we can exploit; however, we must also exploit the information 
contained in the geological and geophysical variables that are 
related to the production variables we are trying to predict.  
These secondary data sources are also redundant with each 
other and we need to sort out the true information content in all 
data sources. All this information must be combined to build 
maps of what we expect the reservoir performance to be at 
undrilled locations.  A summary of our prediction could take the 
form of maps of P10, P50, and P90 values of our production 
variables.  The uncertainty and risk associated with new well 
locations could be assessed. 

The result of data assembly is a set of variables that can be 
used to predict performance properties in the reservoir. These 
variables may include: 3-6 geophysical variables, 2-6 structural, 
2-4 geological, and 2-4 production variables of interest that 
measure reservoir performance. The number of hard calibration 
data to establish the multivariate characteristics of these 10-30 
variables may be few: the wells already drilled in the basin/pool 
under consideration. Conventional multivariate techniques 
would require 1000s or more data observations where all 
variables are present.  This is simply not available in petroleum 
exploration and production. 

We must also consider that the coverage area for each 
variable is different.  It is important that all correlated secondary 
variables be considered.  Geoscientists and engineers have been 
trained to work with data in such complicated settings.  Expert 
judgment and interpretation is extraordinarily valuable.  There 
is a need, however, to supplement such expert assessment with 
quantitative numerical tools that integrate all information 
accounting for the various interdependencies and to provide a 
measure of uncertainty in the predicted variable. 

The methodology we develop below builds on very 
classical statistical and geostatistical tools for probabilistic 
prediction. A Bayesian approach is adopted whereby the 
secondary data are combined together to form a liklihood and 
the primary variables are mapped independently to form a prior 
distribution.  These can be merged using Bayesian inference to 
arrive at posterior or updated probability distributions of the 
variables we are trying to predict. 

Comments on Multivariate Statistics 
The field of statistics provides a number of techniques that 

address the relationships between large sets of multiple 
variables. A set of n correlated variables can be transformed to 
be uncorrelated through techniques such as principal component 
analysis (PCA).  PCA and other techniques such as factor 
analysis can be used to reduce the number of variables that must 
be considered. The variables can be non-linearly transformed to 
maximize linear correlation through techniques such as 
alternating conditional expectation (ACE). The data can be 
grouped together with techniques such as cluster analysis.  
There are a number of multivariate regression techniques for 
prediction of response variables considering multiple input 
variables. There are experimental design methods that aim at 
providing the best setup of test runs to understand multivariate 
statistical properties. 

Most geoscientists and engineers would have difficulty 
choosing the best technique; it is often unclear which technique 
or sequence of techniques is appropriate for a particular 
problem.  Moreover, as in any field, there are many fads and a 
new technique is sometimes thought of as a cure-all for any 
problem. 

Another complicating factor is that multivariate techniques 
do not account for spatial relationships between the variables.  
Multivariate techniques were largely developed in the sciences 
where each observation of multiple variables can be thought of 
as independent of other observations.  A central feature of 
reservoir characterization is spatial correlation in the underlying 
reservoir properties and the consequent production potential.  
We must integrate geostatistical measures of correlation in the 
multivariate statistical tools we choose/develop to account for 
the multiple secondary data. 

A further complication is that not all variables are available 
at all locations.  This unequal sampling requires us to locally 
change the parameters of our multivariate analysis. 

Finally, there is a need to provide a measure of uncertainty 
in any prediction we make.  There is often a high degree of 
uncertainty and risk associated with predicting performance 
characteristics at unsampled locations.  A measure of this 
uncertainty is required to protect the geoscientist and engineer, 
that is, to avoid conveying a false sense of certainty in the 
predictions.  A measure of uncertainty also provides 
management with some performance metrics that can be used to 
track the exploration/development program.  The performance 
of new wells should be within the P10 and P90 values 80% of the 
time. 

Comments on Geostatistics 
There are a number of geostatistical techniques designed to 

work with multiple variables.  These techniques account for the 
spatial relationships between the variables and provide a 
measure of uncertainty at every estimated location.  The main 
technique is cokriging that can be applied in a multivariate 
Gaussian or an indicator framework.  There are simplifying 
assumptions such as collocated cokriging and the Markov- 
Bayes approach.  A concern with all these techniques is the 
inference of the direct and cross variogram measures of 
correlation, which requires a large number of data.  They often 
require a total of n(n+1)/2 variogram models, which is 
extremely difficult in practice. 

Collocated cokriging, in the Gaussian or Bayesian form, 
simplifies the process to consider only the collocated secondary 
variables.  This also removes the need to model the large 
number of variograms mentioned above. There is some 
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implementation problems associated with this simplification, 
but the method has proved very practical. 

These geostatistical methods for considering multiple 
variables really only consider 1 to 3 secondary variables; there 
is no simple way to consider 10 to 30 secondary variables 
simultaneously.  We must tailor the multivariate statistical and 
geostatistical tools to the problem of production performance 
prediction. 

Proposed Approach 
We will keep the notation to a minimum.  We use n to 

represent the number of secondary variables; m is the number of 
production variables that we are estimating.  We will develop a 
solution in the well established multivariate Gaussian 
framework.  This requires each variable to be transformed to a 
univariate Gaussian distribution and, then, the parameters of the 
multivariate Gaussian distribution must be inferred.  The 
univariate transformation is accomplished with the very 
classical normal scores transformation as implemented in the 
NSCORE program in GSLIB. 

All secondary variables are merged into a single likelihood 
estimate at each location.  Of course, the number of secondary 
variables available at each location could vary.  The mean of the 
likelihood distribution is calculated as: 
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where ρi,j is the correlation between the secondary variables and 
ρi,0 the correlation between the secondary variables and a 
primary variable. The n x n set of linear equations on the left 
hand side must be inverted and multiplied by the right hand side 
to solve for the weights. These weights are used to calculate the 
mean (equation 1 above) and the estimation variance: 
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At each location and for every primary variable, Equations 
(1) and (2) provide the mean and variance of a Gaussian 
likelihood distribution.  These distributions are a collapsed 
version of all available secondary variables.  The final 
likelihood distributions account for the relationships between 
the secondary variables and will be used to help inform the 
primary estimate. 

The primary variables are predicted independently using 
kriging.  For every location the kriging step provides an 
estimate, yp

*, and variance, σP
2, that describes the prior 

distribution of the variable. The prior distribution will be 
Gaussian in shape. The kriging process accounts for spatial 
structure through the variogram model for each primary 
variable. 

The likelihood and prior distributions are then combined to 
get the final updated distribution. Since the two input 
distributions are Gaussian in shape, the resulting updated 
distribution will be Gaussian. The updated distribution is 
defined by the updated mean: 
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and the updated variance: 
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Note that standard deviations are used and not variances in 
equation (5).  The resulting updated distribution defined by (4) 
and (5) must be back-transformed to return the production 
variable to their original distributions.  Any summary statistics 
of the local distributions can be calculated including the 
expected value, P10, P50, and P90 values.  These summaries can 
be used to assist with land decisions, well placement, and 
reservoir development. 

The proposed technique is referred to as Bayesian Updating 
under a Multivariate Gaussian model - or a BMG model for 
lack of a better acronym.  The elements of this technique are not 
new; however, this is a novel way of putting everything together 
for reliable and simple estimation. 

Limitations and Assumptions 
Most practitioners will appreciate the simplicity of the 

proposed approach.  More complicated procedures inevitably 
require additional parameters and greater risk of misapplication.  
We are accounting for all major aspects of the problem 
including redundancy between the secondary data variables, 
correlation to the production variables, spatial correlation of the 
production variables, and uncertainty in the prediction.  No 
technique is without inherent assumptions and limitations.  Here 
are the major ones for the proposed approach. 

There is a strong assumption of representative data, that is, 
we assume that the statistical distributions of each parameter are 
fairly sampled with no systematic biases.  Declustering 
techniques could be used to correct for minor sampling bias; 
however, the technique cannot correct for any systematic bias in 
the data.  A systematic bias may be intentional (wells are 
supposed to be drilled in good areas) or unintentional (just bad 
luck).  The data should be looked at carefully. 

There is an implicit assumption of spatial homogeneity or 
stationarity, that is, that the statistical properties are the same 
across the entire study area.  Gradational trends or abrupt 
changes in the depositional style will invalidate this assumption.  
Subdividing the study area and trend modeling may help, but 
there is always a point where we must group the data together 
for (geo)statistical inference. 

A further assumption is that the data are multivariate 
Gaussian, that is, all relationships are linear, with constant 
variance, and with no abrupt constraints.  Moreover, under the 
multivariate Gaussian model, all multivariate relationships are 
summarized by correlation coefficients.  Inspecting each 
bivariate distribution for the reasonableness of this assumption 
is good practice.  Of course, we really should check the 
trivariate and higher distributions for multivariate Gaussianity, 
but that is difficult in practice. 

The estimates of production assume no interaction between 
wells, that is, the production at one location does not take away 
from the production at another location.  Adding up all of the 
cumulative production estimates on the generated maps will 
lead to more volume than is present in the reservoir.  Basic 
material balance calculations must be undertaken to supplement 
these calculations of local production.  Moreover, some local 
flow simulations may be warranted to establish if the wells are 
indeed independent. 

Uncertainty prediction is problematic because our estimates 
at any one location can always be wrong: there is a 10% 
probability to be below the predicted P10 value.  The 
reasonableness of probability estimates must be checked over a 
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number of outcomes.  It would be a significant problem if 10 
wells in a row were drilled below their predicted P10  values. 

Example 
This procedure has been applied on real reservoirs; 

however, the results are considered highly confidential.  This 
synthetic example was created to demonstrate the updating 
process with two primary production variables using six 
variables as secondary data. The two production variables are 
initial production rate (IR) and total production (TP). The 
secondary variables consist of two geological, two structural, 
and two geophysical variables: sandstone indicator, reservoir 
quality, top elevation, formation thickness, impedance, and 
distance to a fault, respectively.  These six variables were 
normalized and can be seen in Figure 1.  All of the variables are 
inside of the 10,000m by 15,000m study area but the coverage 
changes between the variables.  These synthetic variables were 
created using a combination of hand contouring, kriging, and 
cosimulation. 

To create production data, 20 wells were randomly placed 
inside of the study area. Total production at each location was 
assigned randomly and the five highest locations had another 
two wells drilled in the surrounding area.  The initial production 
rate was then assigned based on the total production and some 
random variables.  This provided a total of 30 wells in the study 
area.  The secondary variables were then sampled to obtain 
values at the well locations. 

The primary and secondary data were complied into a 
master data sheet for the well locations.  All of the variables 
were normal score transformed and the correlations were 
calculated (Figure 2).  The correlation matrix indicates the 
variables with correlation above 0.2 and below -0.2 with dots.  
These correlations will be used to create the likelihood 
distributions. 

A program was created that utilized the correlation matrix 
and available data to create likelihood distributions at every 
location for the two primary variables.  These distributions are 
described by the likelihood estimate and variance maps shown 
in Figure 3.  Note that the variance changes depending on the 
availability of the secondary variables. 

Prior distributions must be created before the likelihood 
data can be applied.  The two production variables were kriged 
separately with different variograms and only the well data.  
The kriged estimates and variances are seen in Figure 4.  Note 
that the variance is zero at the data locations and increases as 
you move away. 

The likelihood and prior distributions were then combined 
to create updated distributions at every location.  The updated 
estimates and variances are seen in Figure 5.  The updated maps 
show some interesting features. If both the likelihood and prior 
maps show high values in the same area for the estimate, the 
updated map will be even higher. The same situation will occur 
in the low value areas.  Alternatively, if one map is high and the 
other map is low, the updated estimate will be in the middle. 
The updated variances are decreased at every location, except at 
the wells.  The central area with the highest number of 
secondary data is reduced the most and the reduction is 
decreased as fewer data become available.  These features come 
from the likelihood variances.  The contribution from the prior 
variances is seen near the well locations.  The effect is less 
noticeable compared to the prior maps due to the reduced 
variance everywhere. 

The updated maps can be used as is, but it is difficult to 
interpret the estimate and variance maps at the same time.  To 
make this process easier, maps were created for the two primary 

variables to show the P10, P50, and P90 at every location (Figures 
6 and 7), respectively.  To apply these maps you should start by 
looking at the P50 to look for areas you are interested in. If you 
are trying to identify poor production areas then the P90 map is 
used. Low values on this map are most likely low since there is 
a 90% chance that the value will be lower than the one shown. 
If an area is low on the P90, it is highly likely to find low values 
in that area. If you are trying to identify high value areas, the P10 
map is used.  High value locations on this map are most likely 
high since there is a 90% chance the value will be higher than 
the one shown. 

Conclusions 
Bayesian updating under a multivariate Gaussian model 

provides a simple and robust solution to this inference problem.  
There are, of course, limitations and assumptions such as 
representative data, statistical homogeneity and multivariate 
Gaussianity.   

Traditional geostatistics requires much professional time and 
is aimed at providing inputs to flow simulation.  In many cases, 
this approach is to intensive; there is a need for a simpler 
method to directly predict reservoir performance.  This 
technique has seen much practical application of late. 
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NOMENCLATURE 
n = number of data used in a calculation 
y = normal score transform of a variable 
σ = standard deviation 
λ = weight calculated by normal equations 
ρ = correlation coefficient 
subscripts 
P = prior distribution from same data type 
L = likelihood distribution from same secondary 
U = updated distribution 
i,j = data indicies 
0 = index for location being estimated 
superscripts 
* = estimate from available data 
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Figure 1: Maps of the six normalized variables used for the example of direct prediction of production characteristics. 
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Figure 2: A gray scale map of the correlation coefficients between six secondary variables and two production variables 

being predicted in the example.  The circles represent correlation coefficients that have an absolute value above 0.2. 
 

 
Figure 3: The likelihood maps for the initial production rate (top) and total production (bottom) in normal space. The left 

hand side maps show the estimate of the production variables based on all available secondary data. The right hand 
side maps is the corresponding variance at every location. 
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Figure 4: The prior distribution maps for the initial production rate (top) and total production (bottom) in normal space. 

The left hand side are the estimates and the right hand side are the corresponding variances. 
 

 
Figure 5: The updated maps of the initial production rates (top) and total production (bottom) in normal space. The left 

hand side are the estimates and the right hand side are the corresponding variances. Notice how features from the prior 
and likelihood maps can be seen. 
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Figure 5: The p10 (top), p50 (middle), and p90 (bottom) quantile plots for the  
initial production rate (left) and total production (right). 


